Minggu, 29 Oktober 2017

REAKSI SUBSTITUSI



REAKSI SUBSTITUSI
Nesya el Hikmah
Universitas Jambi

Istilah aromatis sebelumnya dipakai untuk menggambarkan senyawa dengan aroma tertentu. Dalam kimia organik, istilah tersebut sekarang dipakai untuk menunjukkan jenis ikatan untuk senyawa tertentu. Umumnya, walaupun ada kekecualian, senyawa aromatik adalah senyawa siklik yang digambarkan dengan rumus yang mengandung ikatan tunggal dan rangkap. Dalam bidang industri perlu mengetahui mekanisme reaksi dari senyawa aromatik tersebut. Hal ini berkaitan cepat atau tidaknya bahkan bisa atau tidaknya suatu senyawa bereaksi. Suatu gugus yang melekat pada senyawa aromatik menentukan arah reaksi dan pengarah itulah yang akan berkaitan dengan laju dan kereaktifan suatu senyawa aromatik.
Dalam beberapa senyawa memiliki laju atau kecepatan reaksi yang berbeda-beda, seperti pada laju reaksi pada senyawa berikut ini
Dengan melihat contoh diatas dapat kita ketahui bahwa OH dan CH3 mempercepat reaksi, dan substituen lain seperti Cl dan NO2 menghalangi atau menghambat reaksi. Dari tahu dari hal lain bahwa gugus hidroksil dan metal lebih bersifat pendonor elektron dibandingkan hidrogen, sedangkan gugus kloro dan nitro lebih bersifat penarik elektron dibandingkan hidrogen.
Pengamatan ini juga mendukung mekanisme elektrofilik pada substitusi. Jika laju reaksi bergantung pada serangan elektrofilik pada cincin aromatik, maka substituen yang bersifat pendonasi elektron ke cincin akan meningkatkan rapatan elektronnya, dan dengan demikian mempercepat reaksi, substituen yang bersifat menarik elektron dari cincin akan menurunkan rapatan elektron dalam cincin dan dengan begitu memperlambat reaksi. Pola relativitas ini tepat seperti yang teramati, tidak saja dengan nitrasi tetapi juga dengan semua reaksi substitusi aromatik elektrofilik. Disamping perbedaan laju dalam reaksi benzena tersubstitusi, posisi serangan juga berbeda
Klorobenzena dinitrasi pada posisi orto dan para, tetapi tidak pada posisi meta. Namun nitrobenzena menjalani nitrasi pada posisi meta, terjadi sangat sedikit substitusi pada posisi orto dan para.
Suatu benzena yang sudah tersubstitusi dapat mengalami substitusi kedua dan menghasilkan disubstitusi benzena. Struktur dari substitusi pertama menentukan tempat dari substitusi kedua dalam cincin benzena. Misalnya, suatu gugus metil dalam cincin mengarahkan substitusi yang kan datang terutama ke tempat orto dan para. Sedangkan suatu gugus nitro dalam cincin benzena mengarahkan substitusi kedua yang akan datang terutama ke tempat meta.
Sifat-sifat fisik dan reaktivitas cincin benzena sangat dipengaruhi oleh apakah substituen mengurangi atau menambah kerapatan elektron pada cincin. Mengingat bahwa cicnin aromatik mempunyai awan elektron di atas dan di bawah bidang cincin dan elektron-elektron inilah yang mudah diserang oleh elektrofil. Bila sebuah gugus penarik elektron ditempatkan pada cincin, benzena yang relatif nonpoalar akan elektronegatif. Perubahan ini kemudian mengubah sifat-sifat fisik senyawa, misalnya titik cair dan titik didih. Setiap gugus yang terikat pada cincin akan mempengaruhi reaktivitas cincin serta menentukan orientasi substitusi. Bila suatu pereaksi elektrofilik menyerang cincin aromatik, gugus yang telah terikat pada cincinlah yang akan menentukan dimana dan bagaimana penyerapan tersebut berlangsung.
Substituen yang sudah ada pada cincin aromatik menentukan posisi yang diambil oleh substituen baru. Contohnya, nitrasi pada toluena terutama menghasilkan campuran orto- dan para-nitrotoluena.
Sebaliknya, nitrasi pada nitrobenzena pada kondisi yang serupa terutama menghasilkan isomer meta.
Pola ini juga diikuti oleh substitusi aromatik elektrofilik lain, yakni klorinasi, bromonasi, sulfonasi, dan seterusnya. Toluena terutama juga menjalani substitusi orto, para, sementara nitrobenzena menjalani substitusi meta. Secara umum, gugus terbagi ke dalam salah satu dari dua kategori. Gugus tertentu tergolong pengarah orto, para, dan yang lainnya ialah pengarah meta.
Substituen tidak saja mempengaruhi posisi substitusi, tetapi juga mempengaruhi laju substitusi, yaitu apakah akan berlangsung lebih lambat atau lebih cepat dibandingkan benzena. Suatu substituen dianggap sebagai pengaktif (activating) jika lajunya lebih cepat dan pendeaktif (deactivating) jika lajunya lebih lambat. Dalam semua gugus pengarah meta, atom yang berhubungan dengan cincin membawa muatan positif penuh atau parsial dan dengan demikian akan menarik elektron dari cincin. Semua pengarah meta dengan demikian juga merupakan gugus pendeaktif cincin. Sebaliknya, gugus pengarah oto para pada umumnya memasok elektron ke cincin dan dengan demikian merupakan pengaktif cincin. Akan halnya halogen (F, Cl, Br, dan I), kedua efek yang berlawanan ini, mengakibatkan pengecualian penting pada aturan tersebut. Karena bersifat sebagai penarik elektron kuat, halogen merupakan pendeaktif cincin, namun karena adanya pasangan elektron bebas, maka halogen adalah pengarah orto para.
Reaksi substitusi atau disebut reaksi pertukaran gugus fungsi terjadi saat atom atau gugus atom dari suatu senyawa karbon digantikan oleh atom atau gugus atom lain dari senyawa yang lain. Atom karbon ujung suatu alkil halida mempunyai muatan positif parsial. Karbon ini bisa rentan terhadap (susceptible; mudah diserang oleh) serangan oleh anion dan spesi lain apa saja yang mempunyai sepasang elektron menyendiri (unshared) dalam kulit luarnya. Dalam suatu reaksi substitusi alkil halida, halida itu disebut gugus pergi (leaving group) suatu istilah yang berarti gugus apa saja yang dapat digeser dari ikatannya dengan suatu atom karbon. Ion Halida merupakan gugus pergi yang baik, karena ion-ion ini merupakan basa yang sangat lemah. Basa kuat seperti misalnya OH-, bukan gugus pergi yang baik. Spesi (spesies) yang menyerang suatu alkil halida dalam suatu reaksi substitusi disebut nukleofil (nucleophile, “pecinta nukleus”), sering dilambangkan dengan Nu-. Umumnya, sebuah nukleofil ialah spesi apa saja yang tertarik ke suatu pusat positif ; jadi sebuah nukleofil adalah suatu basa Lewis. Kebanyakan nukleofil adalah anion, namun beberapa molekul polar yang netral, seperti H2O, CH3OH dan CH3NH2 dapat juga bertindak sebagai nukleofil. Molekul netral ini memiliki pasangan elektron menyendiri, yang dapat digunakan untuk membentuk ikatan sigma. 
Reaksi SN2 Mekanisme SN2 adalah proses satu tahap yang dapat digambarkan sebagai berikut: 

Nukleofil menyerang dari belakang ikatan C-X. Pada keadaan transisi, nukleofil dan gugus pergi berasosiasi dengan karbon di mana substitusi akan terjadi. Pada saat gugus pergi terlepas dengan membawa pasangan elektron, nukleofil memberikan pasangan elektronnya untuk dijadikan pasangan elektron dengan karbon. Notasi 2 menyatakan bahwa reaksi adalah bimolekuler, yaitu nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi dalam mekanisme reaksi. 
Nukleofil menyerang dari belakang ikatan C — X. Pada keadaan transisi, nukleofil dan gugus pergi berasosiasi dengan karbon di mana substitusi akan terjadi. Pada saat gugus  pergi terlepas dengan membawa pasangan electron, nukleofil memberikan pasangan elektronnya untuk dijadikan pasangan elektron dengan karbon.

Gambar 1. Diagram perubahan energi reaksi SN2

Mekanisme reaksi SN2 hanya terjadi pada alkil halida primer dan sekunder. Nukleofil yang menyerang adalah jenis nukleofil kuat seperti -OH, -CN, CH3O-. Serangan dilakukan dari belakang. Untuk lebih jelas, perhatikan contoh reaksi mekanisme SN2 bromoetana dengan ion hidroksida berikut ini
Peranan gugus tetangga pada mekanisme reaski SN2 
·       Sebagai gugus yang memberikan suatu reaksi intermediate yang baru pada pusat reaksi
·       Dengan adanya partisipasi gugus tetangga, konfigurasi produk sama dengan substrat. Partisipasi gugus tetangga ini juga dapat mempengaruhi kecepatan reaksi. Jika suatu gugus tetangga mempengaruhi reaksi melalui suatu jalan yang menyebabkan peningkatan kecepatan reaksi, maka gugus tetangga tersebut dikatakan sebagai ―anchimeric assistance‖
·       Gugus tetangga dapat menggunakan pasangan elektronnya untuk berinteraksi dengan sisi belakang atom karbon yang menjalani substitusi, sehingga mencegah serangan dari nukleofilik, sehingga nukleofilik hanya dapat bereaksi dengan atom karbon dari sisi depan, dan produknya mengikuti konfigurasi awal. Atom atau gugus yang dapat meningkatkan laju SN2  melalui partisipasi gugus tetangga ialah nitrogen dalam bentuk amina, oksigen dalam bentuk karboksilat dan ion alkoksida, dan cincin aromatik. Partisipasi hanya efektif jika interaksinya membentuk cincin segitiga, lima dan enam.
Adapun ciri reaksi SN2 adalah: 
·       Karena nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi, maka kecepatan reaksi tergantung pada konsentrasi kedua spesies tersebut. 
·       Reaksi terjadi dengan pembalikan (inversi) konfigurasi. Misalnya jika kita mereaksikan (R)-2-bromobutana dengan natrium hidroksida, akan diperoleh (S)-2-butanol.Ion hidroksida menyerang dari belakang ikatan C-Br. Pada saat substitusi terjadi, ketiga gugus yang terikat pada karbon sp3 kiral itu seolah-olah terdorong oleh suatu bidang datar sehingga membalik. Karena dalam molekul ini OH mempunyai perioritas yang sama dengan Br, tentu hasilnya adalah (S)-2-butanol. Jadi reaksi SN2 memberikan hasil inversi. 
·       Jika substrat R-L bereaksi melalui mekanisme SN2, reaksi terjadi lebih cepat apabila R merupakan gugus metil atau primer, dan lambat jika R adalah gugus tersier. Gugus R sekunder mempunyai kecepatan pertengahan. Alasan untuk urutan ini adalah adanya efek rintangan sterik. Rintangan sterik gugus R meningkat dari metil < primer < sekunder < tersier. Jadi kecenderungan reaksi SN2 terjadi pada alkil halida adalah: metil > primer > sekunder >> tersier. 
·       Berbeda dengan SN1, reaksi SN2 (bimolekular) melibatkan dua gugus sekaligus selama proses substitusi berlansung. Artinya reaksi akan sangat dipengaruhi oleh kekuatan masing-masing gugus baik gugus datang maupun gugus pergi. Jika gugus yang datang merupakan pendonor elektron yang lebih baik dari gugus yang akan pergi, maka reaksi substitusi akan berlansung dengan mudah, sebaliknya jika gugus pergi cenderung lebih baik dari gugus datang maka reaksi akan cenderung lambat bahkan tidak berlangsung sama sekali.
·       Jika produk SN1 berupa rasemat maka produk SN2 berupa produk inversi (terbalik) yang dikenal sebagai inversi Walden. 


Pertanyaan
1.      Apa hubungan reaksi substitusi dengan persamaan hammet jika dilihat dari substitennya ?
2.      Bagaimana substiten dapat mempengaruhi laju substitusi ?
3.      Adakah syarat terjadinya rekasi SN2 pada suatu senyawa ? sebutkan.
4.      Jelaskan ciri ciri reaksi SN2 !

DAFTAR PUSTAKA
Bresnick, Stephen. 2004. Inti Sari Kimia Organik. Jakarta :Hipokrates
Fessenden. 2010. Dasar-Dasar Kimia Organik. Tangerang : Bina Rupa Akasara
Fessenden. 1986. Kimia Organik Jilid I. Jakarta : Erlangga
Hart, Harold. 2003. Kimia Organik. Jakarta : Erlangga
Pine, Stanley. 1988. Kimia Organik. Bandung : ITB